Original article

Microbiological profile and antibiogram of burn wound in a tertiary care center; evaluation in 179 cases

sanath bhandary

ARTICLE INFO

Keywords:
antibiotic
burns
resistance
wounds.

ABSTRACT

The risk of infection in burns is well-known. In recent decades, the antimicrobial resistance of bacteria isolated from burn patients has increased. For this reason, a retrospective study was conducted at Father Muller hospital to analyze the bacterial isolates from the wounds of patients admitted to the Burn Unit and to determine the susceptibility patterns of the commonly cultured organisms over a 3-year period, January 2011 to December 2013. A total of 230 microorganisms were isolated from burn wounds of 179 patients. Our results revealed that the most frequent isolate was Acinetobacter baumannii (34%), Pseudomonas aeruginosa (29%), Klebsiella pneumonia (22%), Staphylococcus aureus (8%), Enterococcus spp (4%), Escherichia coli (1%). Multidrug-resistance has emerged as an important concern in our burn unit. Tigecycline, and colistin were found to be the most active drugs against Acinetobacter baumannii. Carbapenems and amikacin, were found to be the most active drugs against other gram negative bacteria. Vancomycin and linezolid were active against gram positive bacteria. Aggressive infection control measures, judicious use of antibiotics as per the prevailing antibiotic susceptibility patterns should be applied to limit the emergence and spread of multidrug-resistant pathogens.

Introduction

Burn patients are highly susceptible for opportunistic infections(1). Infection is a major problem in the management of burns patients. Approximately 75% of mortality following burns are because of infection(2-4). Burn wound monitoring requires the study of changing bacterial flora and their antibiotic susceptibility pattern.(5)

This will help to assess the organisms that are predominant in a particular treatment centre and antimicrobial susceptibility testing will help to formulate antibiotic policy for better management of these patients. The present study is undertaken with the following aims and objectives:

1. To find out the bacterial profile for post burn infection in pus and blood.
2. To evaluate the antibiotic sensitivity of organisms cultured and isolated.

Material and method

This is a retrospective study of bacterial isolates from 200 wound swabs taken from 179 patients admitted to the Burn unit of a tertiary care hospital in Mangalore.

The specimens were transported in sterile, leak-proof containers to the Microbiology department. All specimens were inoculated on 5% blood agar, Mac Conkey agar and Chocolate agar plates and incubated overnight at 37°C aerobically. Bacterial pathogens were identified by conventional biochemical methods according to standard microbiological techniques. [7]

Antimicrobial susceptibility was performed on Mueller-Hinton agar by the standard disk diffusion method recommended by the National committee for clinical laboratory standards (NCCLS). [8] The antibiotics tested for gram-positive cocci were: Ampicillin (10 mg), Cefoxitin (30 mg), Ceftriaxone (30 mg), Ciprofloxacin (5 mg), Azithromycin (15 mg), Vancomycin (30 mg), Linezolid (30 mg); for gram-negative bacilli: Ampicillin (10 mg), Amikacin (30 mg), Gentamicin (30 mg), Ciprofloxacin (5 mg), Piperacillin/Tazobactum (30/10 mg), Cefoperazone/Sulbactam (75/30 mg), Imipenem (10 mg) and for non-fermenters ceftazidime, (30 mg), piperacillin (100 mg), cefepime (30 mg), amikacin (30 mg), gentamicin (30 mg), ciprofloxacin (5 mg), cefoperazone/sulbactam (75/30 mg), Piperacillin/Tazobactum (75/30 mg), Meropenem (10 mg) and Imipenem (10 mg) were used. The antimicrobial susceptibilities were determined according to the Clinical and Laboratory Standards Institute (CLSI) guidelines.

Extended spectrum beta lactamase (ESBL) production was tested by double disk approximation method.

Methicillin resistant Staphylococcus aureus was screened using Cefoxitin (30 mg) disk.
A total of 230 bacterial isolates were obtained from 179 patients’ wound swab over a 3-year period. The most predominant bacterial isolate was Acinetobacter spp (34%) , Pseudomonas aeruginosa (P. aeruginosa) (29%), Klebsiella pneumonia (22%) Staphylococcus aureus (S. aureus) (8%), Escherichia coli (E. coli) (1%) and Enterococcus spp (4%) as shown in Table 1.

Table 1/Fig 1: Distribution of microorganisms isolated from burns wound

<table>
<thead>
<tr>
<th>Microorganism</th>
<th>n</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acinetobacter spp</td>
<td>78</td>
<td>34</td>
</tr>
<tr>
<td>Pseudomonas aeruginosa</td>
<td>68</td>
<td>29</td>
</tr>
<tr>
<td>Klebsiella pneumonia</td>
<td>51</td>
<td>22</td>
</tr>
<tr>
<td>Staphylococcus aureus</td>
<td>19</td>
<td>8</td>
</tr>
<tr>
<td>Enterococcus spp</td>
<td>9</td>
<td>4</td>
</tr>
<tr>
<td>Escherichia coli</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 2/Fig 2: Susceptibilities of gram negative isolates to various antimicrobials

<table>
<thead>
<tr>
<th>Antimicrobial</th>
<th>Acinetobacter spp</th>
<th>Pseudomonas aeruginosa</th>
<th>Klebsiella pneumonia</th>
<th>Escherichia coli</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ampicillin</td>
<td>19 (84.2)</td>
<td>9 (22.22)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cefoxitin</td>
<td>19 (26.3)</td>
<td>NT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ceftriaxone</td>
<td>19 (26.3)</td>
<td>NT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gentamicin</td>
<td>19 (47.3)</td>
<td>NT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amikacin</td>
<td>19 (47.3)</td>
<td>9 (33.33)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ofloxacin</td>
<td>19 (52.6)</td>
<td>9 (22.22)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vancomycin</td>
<td>19 (0)</td>
<td>9 (0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Linezolid</td>
<td>19 (0)</td>
<td>9 (0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Azithromycin</td>
<td>19 (36.8)</td>
<td>9 (55.55)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Acinetobacter spp was the most predominant organism isolated from the burns wound. Followed by Pseudomonas aeruginosa and Klebsiella pneumoniae. Among all the Acinetobacter spp and Pseudomonas spp 38% and 23% respectively were multidrug resistant. Tigecycline and Colistin were the only antimicrobial active against these isolates. Among all the Enterobacteriaceae 42% of Klebsiella and 26% of E.coli were extended spectrum beta lactamase (ESBL) producers. The most effective antimicrobial against Klebsiella and E.coli was Meropenem.

Among the S. aureus isolated from patients within the burn center, the incidence of methicillin-resistant S. aureus (MRSA) was 26% and the most active antimicrobial agents were found to be Vancomycin and Linezolid against S. aureus isolates respectively. None of the Enterococcus spp. was found to be resistant to Vancomycin.
Discussion

Colonisation of burn wounds with microorganisms is almost certain to occur in patients with major burns. The most obvious reason is the unparalleled excellence of the burns wound as a bacterial microbiological culture medium. Devitalised tissues serves as a pabulum for microbial growth and with decreased blood flow to burn wounds as a contributing factor(6).

The most commonly isolated organism in the present study was Acinetobacter baumannii followed by Pseudomonas aeruginosa and Klebsiella pneumoniae. Acinetobacter spp was shown to be an important cause of nosocomial infection in burns unit(7). Several studies have reported it to a predominant organism in burns unit. Some of the reasons for this trend is its presence as a normal commensal and easy spread due to multidrug resistance in hospital settings(8,9). Pseudomonas aeruginosa was isolated from 29% of wound swabs. This is in contrast to other studies where Pseudomonas aeruginosa was the commonest isolate(10). Klebsiella pneumonia was the third in line. However its frequency is higher as compared to other studies(11,12). The isolation rate of gram negative bacilli was higher as compared to the gram positive cocci. This is in contrast to other studies where the isolation rate of Staphylococcus aureus was much higher(13,14). Amongst the gram positive cocci Staphylococcus aureus was predominant followed by Enterococcus spp.

Acinetobacter spp and Pseudomonas aeruginosa were multidrug resistant with only Tigecycline and colistin active against these organisms. Singh et al. also reported high prevalence of multidrug resistant gram negative bacilli in burns unit. In this study carbapenems like imipenem and meropenem and combination drugs like piperacillin/tazobactum and ceftazidime/salbactum showed good efficacy. This is in agreement with other studies. One of the reasons stated by Mehta et al. was that these third generation drugs are used as rescue drugs(15,16). ESBL production was lesser as compared to other studies(9). Guggenheim et al have showed that imipenem and meropenem were the most active antimicrobial agents for ESBL producing strains(17). Our results were in agreement with this study. MRSA was found among 26% of the Staphylococcus aureus isolates which was lesser in comparison to other studies (18,19). MRSA isolated in this study were sensitive to vancomycin, linezolid and amikacin.

In conclusion high antimicrobial resistance is a major concern in burns unit. Aggressive infection control measures, judicious use of antibiotics as per the prevailing antibiotic susceptibility patterns should be applied to limit the emergence and spread of multidrug-resistant pathogens.

REFERENCES


