Original Article

A prospective study of Myocardial Infarction patients admitted in a tertiary care hospital of south-eastern Rajasthan

Sushma Pandey*, Suresh Pandeyb, Purushottam Jhanwarc, Anshul Jhanward

*Assistant Professor, Department of Medicine, Jhalawar Medical College, Jhalawar (Rajasthan), India
bAssistant Professor, Department of Anaesthesia, Jhalawar Medical College, Jhalawar (Rajasthan), India
cAssistant Professor, Department of Orthopedics, Jhalawar Medical College, Jhalawar (Rajasthan), India
dResident, Department of Pharmacology, R.D.G.M.C., Ujjain (M.P.), India

ARTICLE INFO

Keywords:
Coronary artery disease (CAD)
Myocardial infarction (MI) and electrocardiogram
ST segment myocardial infarction
NON-ST segment myocardial infarction

ABSTRACT

Background: There is a paucity of data on the relative importance of various traditional risk factors for coronary artery disease among rural Indians. We conducted a prospective study to determine the risk factors for acute myocardial infarction in a rural population of south-eastern Rajasthan. Objective: To access the prevalence and risk factors of myocardial infarction admitted to S.R.G Hospital, Jhalawar and provide a baseline for deriving effective preventive measures of risk factors for the local community. Method: Study was conducted in S.R.G Hospital intensive care unit in Jhalawar Medical College in year 2011 on 112 patients. Criteria for diagnosis of myocardial infarction for all patients were Electrocardiogram (ECG), troponin test, Creatine phosphokinase (CPK) blood level, lipid profile, and blood sugar. The Institutional Ethics Committee’s approval was obtained before starting the study. Consent was taken from all the patients included. All the data were collected from case record of patients and determined and charted in an Excel sheet. Simple frequencies and percentages were obtained for various variables. Results: Interpretation of results shows 70% of MI cases were from rural population of Jhalawar, in age group between 40-70 years and most of the patients are laborers and male farmers. Most common risk factor found was smoking and tobacco use. Location wise most common type of myocardial infarction encountered was anterior wall myocardial infarction (AWMI). Conclusion: Observation from our study shows incidence of myocardial infarction is alarmingly high in rural population of Jhalawar because of poor dietary habit, smoking and tobacco chewing.

1. Introduction

Myocardial infarction is the most common contributor of morbidity and mortality worldwide [1]. In US about 1.1 million cases occur every year with about 30% mortality and more than 50% of deaths occur on way to the hospital. In India, 31.7% of deaths occur due to MI. Incidence of cardiovascular diseases was about 7% in 1970 and increased up to 32% in 2011 in India [2]. The huge burden of CAD in Indian subcontinent is the consequence of large population and high prevalence of cardiovascular risk factors like smoking, alcohol, low fruit and vegetable intake, physical activity, obesity, high blood pressure and abnormal lipids and diabetes [3]. Diagnostic criteria according to World Health Organization (WHO) should be two of the following three criteria being history of chest pain, ECG changes and changes in cardiac markers like CPK and troponin [4]. With this background, the present study was undertaken among the rural and urban population of Jhalawar in relation of age, gender and category of physical activity. While studying prevalence of CAD and risk factors in S.R.G hospital, Jhalawar, the opportunity was utilized to increase the awareness of risk factors of the ongoing epidemic of CAD among general public and propagating the preventive measures against the modifiable risk factors like smoking, obesity, control of diabetes, hypertension, dyslipidemia, sedentary lifestyle and faulty dietary habits.
2. Material and Methods

A prospective study was conducted for a period of 1 year from January 2011 to December 2011 in S.R.G. hospital, Jhalawar. Jhalawar is a municipal town having population of about 14 lakhs. All the patients studied were admitted in intensive care unit. After detailed history, physical examination, ECG and biomarkers were done (CPK, troponin test level estimated). Blood sugar and lipid profile was done for all the patients. Inclusion criterion for study was age, gender, physical activity, demographic distribution and risk factors like smoking, tobacco chewing, alcohol, diabetes, hypertension and dyslipidemia. Patients were treated according to their condition. Thrombolysis was done in some of the cases who reached in time and low molecular weight heparin was given and follow-up ECG and blood sugar was done every day. Most of the patients were discharged on the 6th day.

3. Result

Study was conducted on 112 patients consisting of acute ST segment myocardial infarction (STEMI) and NON-ST segment myocardial infarction (NON-STEMI). Demographic characteristics of the patients admitted were given in Table/Fig-1. Out of the total patients of MI, 69.64% were from rural and 30.36% were from urban area. Gender distribution of study shows 70.5% were males and 29.5% were females. Occupation wise percentage of farmers were more (30.4%) followed by labourers and govt. employee. All the patients studied were found to be more than 30yrs of age. Study revealed 35% of patients were above 50 years and 33% between 40-50 years as shown in Table/Fig-2. Most of the study population scored high with more physical activity and low nutrition diet. Association of risk factors were shown in Table/Fig-3. Most common risk factor found was smoking and tobacco (55.4%) followed by dyslipidemia and hypertension (42.9% and 28.6% respectively). Statistically tobacco and smoking is major cause of MI in laborers and farmers. Location of MI shows that anterior wall myocardial infarction (AWMI) and antero-septal myocardial infarction (ASMI) were more common than the rest as shown in Table/Fig-4. All the patients were treated in ICU. About 35% of patients were given thrombolytics and remaining were treated with low molecular weight heparin. 13 cases died which is about 11.6% mortality Table/Fig-5. Mortality is high for those who came late and were in shock with arrhythmia.

Table/Fig-1: Demographic characteristics

<table>
<thead>
<tr>
<th>Distribution</th>
<th>Number (N)</th>
<th>Percentage (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rural</td>
<td>78</td>
<td>69.64%</td>
</tr>
<tr>
<td>Urban</td>
<td>34</td>
<td>30.36%</td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>79</td>
<td>70.5%</td>
</tr>
<tr>
<td>Female</td>
<td>33</td>
<td>29.5%</td>
</tr>
<tr>
<td>Occupation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Labourer</td>
<td>31</td>
<td>27.7%</td>
</tr>
<tr>
<td>Govt.Employee</td>
<td>28</td>
<td>25%</td>
</tr>
<tr>
<td>Farmer</td>
<td>34</td>
<td>30.4%</td>
</tr>
<tr>
<td>Non-working</td>
<td>19</td>
<td>17%</td>
</tr>
</tbody>
</table>
risk of mortality [7]. Men are at a greater risk of heart disease than a premenopausal woman. But once past the menopause, a woman’s risk is similar to a man’s. Risk of MI is similar for men and women [8]. Mortality due to MI is similar in both gender. As observed in the studies, clustering of various cardiovascular risk factors was reported in Asian Indians [8,9,10]. Total serum cholesterol and HDL cholesterol are considered to be important risk factors for CAD in some studies while hypertriglyceridemia with low HDL is reported to be the major risk factor in other studies [11]. In our study, dyslipidemia was present in 43.6% cases. The prevalence of MI with hypertension is reported to be 31.5% in some studies while in this study it is 28.5% [12,13]. Heart disease in patients with diabetes mellitus is different from that in non-diabetics because in this dyslipidemic metabolic syndrome it is the real hidden culprit for cardiac metabolic burden [14-18]. According to the World Health Report 2000, community-based and national campaigns that target major modifiable risk factors may reduce deaths and disability from CAD by nearly half [19]. Most of the deaths from acute MI are due to arrhythmia and shock. In this study mortality is 11.6% and that is because of delay in treatment.

5. Limitations

Our study has certain limitations. First, our sample of Acute MI may not be representative of all patients with the disease because those who were undiagnosed, misdiagnosed, reported late to the hospital or died soon after arrival (who did not report to the hospital at all) were less likely to be included. Second, we measured glucose and lipid levels only once at the time of admission. Third, CAD may be related to non-traditional risk factors such as C-reactive protein, fibrinogen, lipoprotein (a) and homocysteine. However, the current evidence is insufficient to conclusively support the additive value of these specific risk factors over conventional risk factors.

6. Conclusion

The present study is community based study predominantly in rural population, utilizing well defined criteria including laboratory testing. Therefore these results may reflect the true burden of MI and risk factor in the community at large. The need of the hour would be to increase the awareness of risk factor for MI among general public. Those at risk could be asked to modify their lifestyle, bring out dietary changes and increase in physical activity. The challenge is to develop appropriate strategies to prevent CAD and promote healthy lifestyles in rural communities. If the growing epidemic of CAD is to be reversed, clinicians, healthcare organizations, policy-makers and communities must work together to translate evidence into action.

Acknowledgement: I wish Sincere thanks to Dr. Suresh Pandey, Dr. P. Jhanwar for helping me in this study.

Conflict of Interest: None declared

Source of financial support: None

7. References