Effect of Centella asiatica extracts on Shigella dysenteriae and Bacillus coagulans sp. compared to commonly used antibiotics

Madhusmita Bhagawati*, Naba Kanka Hazarika, Mrinal Kumar Baishya, Kandarpa Saikia, Debo Kanta Pegu, Rajeev Sarmah

Department of microbiology, Srimanta Sankardeva University of Health Sciences, Guwahati.
Department of Bioengineering, Gauhati University, Guwahati.
Centre for Bioinformatics Studies, Dibrugarh University, Guwahati.
Department of Biotechnology, Assam down town University, Guwahati.

ARTICLE INFO

Keywords:
Guts flora
Centella asiatica extracts
Inhibition
Pathogen

ABSTRACT

Centella asiatica is known for its antibacterial property from time immemorial. A comparative study on the action of its crude extract on Shigella dysenteriae and Bacillus coagulans was performed to see the difference of its effects on the two bacteria. As one of them is a pathogen and the other one is useful for human hosts. The study revealed that 1 mg of the extract dissolved in 1ml 4% DMSO inhibits Shigella dysenteriae with zone of inhibition of 12±1 mm but could not act on Bacillus coagulans in same concentration. However, known antibiotics act on both the organisms. The action of acetone, chloroform and methanol extracts of Centella asiatica on Shigella dysenteriae did not vary significantly. The GC-MS analysis of the methanol extracts with peaks > 90% similarity index with NIST library revealed bicyclo[7.2.0]undec-4-ene,4,11,11-trimethyl-8-methylene; caryophyllene; 1,2-benzenedicarboxylic acid, bis(2-methylpropyl) ester; 1h-3a,7-methanoazulene, octahydro-1,4,9,9-tetramethyl.

Introduction

Nature has bestowed us by providing a rich botanical wealth and large number of diverse types of plants growing in different parts of the earth. India is the largest producer of medicinal herbs and appropriately called Botanical Garden of the world. In India almost 95% of the prescriptions have been reported to be plant based traditional system of Unani, Ayurveda, Homeopathy and Siddha. According to World health organization medicinal plants would be the greatest source to obtain an array of drugs. Thus such plants should be investigated to better understanding for their properties, safety practices in addition to usefulness [1]. In other hand, medicinal plants are considered to be chemical factories as they contain multitude of chemical compounds such as alkaloids, glycosides, saponins, resins, oleoresins, sesquiterpene, lactone and oils etc. [2]. The different physiological action of organic compounds is due to their different formulation of these bioactive substances [3]. Moreover, compounds are chemically and taxonomically extremely diverse with abscute function. They are widely used in human therapy, veterinary, agriculture, scientifically research and countless other areas [4]. Extraction and characterization of several phytochemicals from green factory (plants) have given birth to some high active profile drugs [5]. It is believed that crude extract from medicinal plants are more biologically active than isolated compound due to their synergistic effects [6]. However, phytochemical screening is essential to detect the various active compounds which could be used as the base of modern drugs for curing various ailments.

Maranta arundinacea which belongs to family Marantaceae, commonly known as arrowroot and is considered as an economically important plant. The plant is native to South America, West Indies, Mexico and Central America and for its starchy rhizome; it is widely cultivated in India, China, Sri Lanka and Philippines. The rhizome of this plant is able to decrease diarrhoea and relieve abdominal pain in those, suffering due to irritable bowel syndromes. It relieves acidity, indigestion and different types of chronic abdominal pain and irritation on gastrointestinal tract. The plant has antiseptic, anti-inflammatory, antidiarrhoeal and antioxidiant activities. The mashed rhizomes are also used in septic wound, scorpion and black spider bites and draws out poison from injured areas [7, 8]. Therefore due to the above vital medicinal properties, the study was undertaken to screen and evaluate the phytochemical properties of aqueous, methanol, ethanol and hexane extracts of leaf and rhizome.
Centella asiatica (Linn) is one of the ethnomedicinal plants used for the ailment of human guts irritation and disorders. In Assam; a state of India, it is known as ‘Manimuni’ and widely been used as antimicrobial agent during guts infections. It is also described as Mandukaparni in Ayurvedic System of medicine [1]. Centella asiatica is claimed to possess a wide range of pharmacological effects, such as wound healing [2], fungicidal antimicrobial [3], antioxidant and anticancer [4, 5]. Besides these, it has also been reported to be useful in the treatment of various problems like inflammation, diarrhoea, skin lesions, tuberculosis, asthma, leprosy etc. [6]. The herb is used as vegetable by the people of Assam (India)[7]. Centella asiatica is also of considerable importance in China, Nepal, Bangladesh, Malaysia, Indonesia, and Sri Lanka[8,9]. The human digestive-tract or gastrointestinal (GIT) associated microbes are referred to as the gut microbiome. It was reported that human gut consists of more than 50 bacterial phyla [10] dominated by Bacterioides and Firmicutes. The number of bacterial species present in human gut vary widely but it is generally accepted that individuals harbor more than 1000 microbial species level phylotypes [11-13]. Favourable microenvironment of gut harbor mostly the genera Bacteriodes, Bifidobacterium, Streptococcus, Enterococcus, Clostridium, Lactobacillus and Ruminococcus as the luminal community[14]. Whereas Clostridium, Lactobacillus and Enterococcus were detected in the mucus layer and epithelial crypts of the small intestine as well [14]. It is well established that microbiome of human guts play manifold function for human health such as enhancing metabolism, synthesizing vitamins [15-18], protecting host from pathogenic microorganisms by competitive-exclusion effect, synthesizing bacteriocin, competing for attachment sites on epithelial cells and competing for resources [18].

On infection by pathogenic microorganisms such as Shigella dysenteriae causing shigellosis, antibiotics viz Ampicillin, Cefixime, Ciprofloxacin, Nalidixic acid are generally recommended. These antibiotics have side effects and may have effect on non pathogenic microbiome. On the other hand Centella asiatica has antimicrobial properties.Therefore an effort has been made to ascertain i) if the above mentioned antibiotics have effect on non-pathogenic microorganism with reference to Lactobacillus species and ii) whether it is possible to replace antibiotics mentioned above by using Centella asiatica.

MATERIAL AND METHODS

Collection and Identification of Plant Material

The plant specimen Centella asiatica was collected from the Agricultural Research Institute, Kahikushi, Guwahati, Assam India and cultivated in the laboratory. The identity of the plant was confirmed by the Department of Botany Gauhati University on the herbarium submitted to it having accession No. 18243.

Preparation of crude extract

Matured Leaves of the plant were collected and air dried for a week. Dried leaves were grinded, sieved and stocked. The powdered plant leaves weighing 200 g were subjected for extraction in different solvent viz methanol, acetone and chloroform, for six hours at 62 0C using soxhlet apparatus followed by evaporation of the solvents and drying by rotator evaporator (BUCH 1 TYPE IRA). The final products were stored in sterile screwed capped bottles at – 40C.

Collection and isolation of bacterial strains

The pathogen Shigella dysenteriae and Bacillus coagulans were collected from various clinical specimens at Bacteriology Laboratory, Microbiology Department of Gauhati Medical College. These organisms were cultured in blood agar and after identification the pure cultures were maintained in Muller Hinton agar medium. Biochemical tests including gram staining were performed for their identification. The identification of the organisms was done by observing their colony characteristics and performing various biochemical tests including KB2 kit, HiMedia. The stock samples were preserved at -200C [19].

Comparative analysis of Antimicrobial activity of the plant extract and known antibiotics

Shigella dysenteriae and Bacillus coagulans were evenly cultured in the Muller Hinton agar media by swabbing technique. The zone of inhibition was assayed by well diffusion method. Wells of size 6mm diameter was prepared after inoculation of the organisms to incorporate 50ml of the 1 mg of extract in 1 ml of 20% Dimethyl sulfoxide (DMSO). A well for control was filled with 20% DMSO alone as control so as to determine neutral effect of the DMSO. Similarly antibiotic discs containing 10 mg of Ampicillin, 5mg Ciprofloxacin, 30 mg Nalidixic acid and 5 mg Cefixime (CFM) were used for evaluation and their effects on both the organisms. The extracts that showed inhibitory effects were further evaluated through MIC (Minimum Inhibitory Concentration) using microtitre plate based assay with resazurindye.

Minimum Inhibitory Concentration (MIC)

Preparation of Resazurin Dye Solution: To 100 ml distilled water 0.5 gm of the resazurin dye was added, mixer was vortexed to get homogenous mixture of resazurindyesolution.

Resazurin based Microtitre Dilution Assay (RMDA): 100 ml of LB broth was added to all microtitre plate wells that were to be tested. To the broth of 100 ml of drug prepared in different solvent was transferred from column 1 to column 6 by two fold serial dilution technique. The experiments for each solvent were triplicated. To each of the well 10 ml of resazurin dye was added. Finally 10 ml of bacterial inoculums was added to each well to achieve a final concentration of 5x106 CFU/ml each of the plate had a set of 2 controls (a) a column with all solution except the bacterial solution and (b) a column with all solution except the studied plant extracts. The plates were then incubated at 37 0C and results were observed after 24 hours. The experiment was performed under aseptic condition in the laminar air flow. After 24 hours the colour change

Preparation of crude extract

- Matured Leaves of the plant were collected and air dried for a week.
- Dried leaves were grinded, sieved, and stocked.
- The powdered plant leaves were subjected for extraction in different solvents for six hours at 62°C.
- The final products were stored in sterile, screwed capped bottles at -4°C.

Collection and isolation of bacterial strains

- Shigella dysenteriae and Bacillus coagulans were collected from clinical specimens.
- Pure cultures were maintained in Muller Hinton agar medium.
- Biochemical tests were performed to identify the organisms.

Comparative analysis of Antimicrobial activity of the plant extract and known antibiotics

- The extracts showing inhibitory effects were evaluated through Minimum Inhibitory Concentration (MIC) assay.
- Resazurin-based Microtitre Dilution Assay (RMDA) was used.

Minimum Inhibitory Concentration (MIC)

- A microtitre plate-based assay with resazurindye was performed.
- Control wells were set to determine neutral effects of DMSO.
- The extracts that showed inhibitory effects were further evaluated for MIC.

Preparation of crude extract

Matured Leaves of the plant were collected and air dried for a week. Dried leaves were grinded, sieved and stocked. The powdered plant leaves were subjected for extraction in different solvents for six hours at 62°C using soxhlet apparatus followed by evaporation of the solvents and drying by rotator evaporator. The final products were stored in sterile, screwed capped bottles at -4°C.

Collection and isolation of bacterial strains

The pathogen Shigella dysenteriae and Bacillus coagulans were collected from various clinical specimens at Bacteriology Laboratory, Microbiology Department of Gauhati Medical College. Pure cultures were maintained in Muller Hinton agar medium. Biochemical tests were performed for identification. The identification of the organisms was done by observing colony characteristics and performing various biochemical tests. The extracts that showed inhibitory effects were further evaluated through MIC assay.

Minimum Inhibitory Concentration (MIC)

Preparation of Resazurin Dye Solution: To 100 ml distilled water 0.5 gm of the resazurin dye was added. The dye was vortexed to get a homogenous mixture.

Resazurin-based Microtitre Dilution Assay (RMDA): 100 ml of LB broth was added to all microtitre plate wells. Each well received a final concentration of 5x10⁶ CFU/ml of the respective bacteria. Controls were set: (a) a column with all solution except bacteria and (b) a column with all solution except the studied plant extracts. The plates were incubated at 37°C and observed after 24 hours. The experiment was performed under aseptic conditions in a laminar air flow. After 24 hours, the colour change was observed.
was observed. The colour of the wells changed from blue to pink which is considered to be positive result. The lowest concentration of the plant extract at which the colour change occurred was taken as the MIC values. Form the triplicates the average value was considered to be final.

Thin Layer Chromatography (TLC)

TLC of Centella asiatica leaf extract was done using different solvent systems which confirmed the presence of the different phytochemicals. Two different solvent systems were prepared and used for separation of the compound in the extract. One consisted of the mixture of chloroform and methanol and the other mixture of chloroform, glacial acetic acid and methanol. The separation of the compounds were done as described by Biradar et.al. [20].

GC – MS

Thin layer Chromatography (TLC) followed by Gas chromatography - Mass spectrometry (GC – MS) was performed for predicting the compounds present in the extracts.

Statistical Analysis

All statistical analyses were performed using MS excel.

Results

The biochemical tests revealed that the organism which was colourless, circular, convex, hemolytic colony moderately translucent with smooth surfaces and entire edges was identified to be Shigella dysenteriae. The organism with convex, entire and smooth surfaced colonies, white to cream in colour and did not grow in 7% NaCl containing media was identified to be Bacillus coagulans (Table 1).

S. dysenteriae and B. coagulans were grown evenly covering the entire media before application of the plant extracts. It has been observed that the extracts of C. asiatica inhibit S. dysentria forming a zone of inhibition ranging from 11 – 12 mm in size (Table 2, Fig 1A). Minimum Inhibitory Concentration of the extracts of C. asiatica was analyzed in case of the S. dysentria (Table 3) ignoring B. coagulans as no inhibition was observed for it. The S. dysenteriae was inhibited by Ciprofloxacin and Nalidixic acid with a zone on inhibition of 25 and 32 mm respectively (Table 2, Fig 1 B). B.coagulans was susceptible to all of the antibiotics used in the study with zone of inhibitions 11, 25, 23, 24 mm on application of antibiotics Ampicillin, Ciprofloxacin, Nalidixic acid and CFM respectively. The minimum inhibitory concentration of the extracts required for inhibiting S. dysentria was recorded to be 2.5, 1.25 and 2.08 mm for extract in solvents acetone, methanol and chloroform respectively. The extract which had shown better inhibitory effects was then subjected for Thin Layer Chromatography (TLC) followed by Gas Chromatography – Mass Spectrometry (GC-MS) analysis.

Thin Layer Chromatography (TLC) was done using solvent system chloroform and methanol in 9:1 proportion with different leaf extracts of C. asiatica reveals three compounds, Rf values of the experiment is shown in Table – 7. When used solvent system chloroform glacial acetate and methanol also revealed three compounds and four compounds were present in methanol extract, Rf values of the experiment is shown in Table – 7.

Plant extracts were subjected for thin layer chromatography for separation followed by GC-MS (Gas Chromatography Mass spectrometry). The fractions obtained from TLC were scrapped and dissolved in DCM (Dichloromethane) filtered and centrifuged and finally subjected for GC – MS analysis (Fig – 2). Those peaks matching similarity index greater than 70% in the NIST library were assigned. The library search of the peaks which revealed the following compounds were present in the plant extracts. bicyclo[7.2.0]undec-4-ene, 1,1,11,11-trimethyl-8-methylene; caryophyllene; 1,2-benzenedicarboxylic acid, bis(2-methylpropyl) ester; 1H-3a,7-methanoazulene, octahydro-1,4,9,9-tetramethyl.

TABLE-1 SHOWING THE RESULTS OF THE VARIOUS TEST PERFORMED FOR IDENTIFICATION

<table>
<thead>
<tr>
<th>Tests</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gram Staining</td>
<td>S. dysenteriae</td>
</tr>
<tr>
<td>Mobility</td>
<td>Gram Negative</td>
</tr>
<tr>
<td>Indole</td>
<td>Negative</td>
</tr>
<tr>
<td>Methyl red</td>
<td>Positive</td>
</tr>
<tr>
<td>Voges-proskaver</td>
<td>Negative</td>
</tr>
<tr>
<td>Citrate</td>
<td>Negative</td>
</tr>
<tr>
<td>Catalase</td>
<td>Positive</td>
</tr>
<tr>
<td>Oxysase</td>
<td>Negative</td>
</tr>
<tr>
<td>Nitrate</td>
<td>Positive</td>
</tr>
<tr>
<td>Reductase</td>
<td>Glucose + Lactose</td>
</tr>
</tbody>
</table>

TABLE - 2 ANTIMICROBIAL ACTIVITY OF THE PLANT EXTRACTS AND ANTIBIOTICS ON THE ORGANISMS

<table>
<thead>
<tr>
<th>Organism</th>
<th>Acetone</th>
<th>Chloroform</th>
<th>Methanol</th>
<th>Ampicillin</th>
<th>Ciprofloxacin</th>
<th>Nalidixic</th>
<th>CFM</th>
</tr>
</thead>
<tbody>
<tr>
<td>S. dysenteriae</td>
<td>32</td>
<td>31</td>
<td>33</td>
<td>R</td>
<td>R</td>
<td>1.527</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>11</td>
<td>13</td>
<td>1</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>1.527</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Lactobacillus sp</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>R</td>
<td>R</td>
<td>1.527</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.527</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td>2</td>
</tr>
</tbody>
</table>

sd is standard deviation, NA is no activity, R is resistant, CFM is Ceftriaxone.
TABLE - 3 MINIMUM INHIBITORY CONCENTRATION OF THE PLANT EXTRACTS AGAINST S. dysenteriae

<table>
<thead>
<tr>
<th>Extracts</th>
<th>Minimum Inhibitory Concentration (in mg)</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Acetone</td>
<td>2.5</td>
<td>2.5</td>
</tr>
<tr>
<td>Methanol</td>
<td>1.25</td>
<td>1.25</td>
</tr>
<tr>
<td>Chloroform</td>
<td>1.25</td>
<td>2.5</td>
</tr>
</tbody>
</table>

TABLE - 4 ANOVA WITHIN ANTIBIOTICS ACTIVITY AGAINST THE ORGANISMS

<table>
<thead>
<tr>
<th>Source of Variation</th>
<th>SS</th>
<th>df</th>
<th>MS</th>
<th>F</th>
<th>P-value</th>
<th>F crit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Between</td>
<td>49</td>
<td>1</td>
<td>49</td>
<td>19.6</td>
<td>0.047421</td>
<td>18.51282</td>
</tr>
<tr>
<td>Within Groups</td>
<td>5</td>
<td>2</td>
<td>2.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>54</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SS is Sum of Squares, df is degree of freedom, MS is Mean Square, F is F test, P-value is probability value, F crit is F test critical value

TABLE - 5 ANOVA BETWEEN ANTIBIOTICS ACTIVITY AGAINST THE ORGANISMS

<table>
<thead>
<tr>
<th>Source of Variation</th>
<th>SS</th>
<th>df</th>
<th>MS</th>
<th>F</th>
<th>P-value</th>
<th>F crit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Between</td>
<td>4</td>
<td>1</td>
<td>4</td>
<td>0.16</td>
<td>0.727834</td>
<td>18.51282</td>
</tr>
<tr>
<td>Within Groups</td>
<td>50</td>
<td>2</td>
<td>25</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>54</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SS is Sum of Squares, df is degree of freedom, MS is Mean Square, F is F test, P-value is probability value, F crit is F test critical value

TABLE - 6 ANOVA BETWEEN VARIOUS PLANT EXTRACTS AND ANTIBIOTICS AGAINST THE S. dysenteriae

<table>
<thead>
<tr>
<th>Source of Variation</th>
<th>SS</th>
<th>df</th>
<th>MS</th>
<th>F</th>
<th>P-value</th>
<th>F crit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Between</td>
<td>2.8</td>
<td>2</td>
<td>1.4</td>
<td>0.014468</td>
<td>0.985654</td>
<td>3.885294</td>
</tr>
<tr>
<td>Within Groups</td>
<td>1161.2</td>
<td>12</td>
<td>96.76667</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>1164</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TABLE - 6 ANOVA BETWEEN VARIOUS PLANT EXTRACTS AND ANTIBIOTICS AGAINST THE S. dysenteriae

<table>
<thead>
<tr>
<th>Leaf extracts</th>
<th>Sol(CM)</th>
<th>Sol(CGAM)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>R1</td>
<td>R2</td>
</tr>
<tr>
<td>Acetone</td>
<td>0.88</td>
<td>0.82</td>
</tr>
<tr>
<td>Chloroform</td>
<td>0.86</td>
<td>0.78</td>
</tr>
<tr>
<td>Methanol</td>
<td>0.84</td>
<td>0.78</td>
</tr>
</tbody>
</table>

Figure 2A the inhibition zones formed due to application of various plant extracts on S. dysenteriae. A – Acetone extract, M – Methanol extract, CH – Chloroform extract, C – control

Figure 2B the inhibition zones formed due to application of various antibiotics on S. dysenteriae
Discussions

The variation in the size of zone of inhibition was non-significant revealing all of the extracts obtained using different solvents were showing almost equal size of zone of inhibition. However maximum sized was recorded in case of the extracts obtained using methanol as a solvent. It was however, interesting to notice that plant extracts when applied on B. coagulans, no zone of inhibition were formed. The S. dysenteriae was resistant to Ampicillin and Cefixime (CFM) but inhibited by ciprofloxacin and Nalidixic acid where as B.coagulans was susceptible to all of the antibiotics used in this study. Analysis of variance shows that S. dysenteriae and B. coagulans were inhibited by Ciprofloxacin and Nalidixic acid with no significant difference (p-value 0.047421). However, the zone of inhibition formed by these antibiotics varies significantly (p - value 0.727834) when compared among the actions of the different antibiotics (Table – 4, 5). The plant extract although produced smaller sized zone against S. dysenteriae showing its antimicrobial activity and significantly (P - value 0.985654) varies (Table - 6) when compared between the activity of various plant extracts and antibiotics Ciprofloxacin and Nalidixic acid. The capability of the extracts may be improved by increasing its concentration. The results also reveal that plant extracts did not have any inhibitory activity against B. coagulans, which is most interesting to be noted. This specificity of the plant extracts enabling it to be used targeting pathogenic S. dysenteriae specifically, without harming the beneficial microorganism (B. coagulans) present in the host. The antibacterial effect of the plant extracts on S. dysenteriae seems to be correlating with the result of Tanvir et al 2015 [21], where the zone of inhibition was 16mm on application of 16 mg/ml of plants extracts, which in this study is about 11-12 mm on application of 5mg/ml that may be because of the plant growth and synthesis of the metabolites as well as variation in the experiments performed. In this study the activity of the acetone, chloroform and methanol extracts did not significantly vary on the contrary some of the literature reported maximum sized zone of inhibition in case of chloroform extract. The study of ethanolic extract of C. asiatica was reported to have no action against S. dysenteriae [22], however, after three repetition of the experiment with methanolic extract this study revealed inhibition as illustrated above (Table 2 – 3). The antimicrobial properties of C. asiatica which was observed in this study is well supported by several studies [23, 24, 25].

Conclusion

Centella asiatica is as important herb used as vegetable as well as ethno-medicine for gastroenteric diseases since time immemorial. The present study reveals that the extract of the plant likely to be effective against S. dysenteriae (pathogen) without acting upon B. coagulans (useful bacteria). The compounds of C. asiatica may be established as pathogen targeting rather than host beneficial bacteria by further comparative studies. However, the present study reveals that centella asiatica may be used as an alternative to antibiotics or along with antibiotics against S. dysenteriae. As the present and many of the studies have shown that the extracts of the plant have wound healing and antibiotic property the plant may be of high value. Further, bioinformatics approach of targets identification and molecular dynamics studies may throw insights of interactions.

Acknowledgement

The Authors are highly grateful to the Department of Microbiology, Srimanta Sankardeva University of Health Sciences, for microbial samples and facilities for experiments and the Department of Bioengineering, Gauhati University for the facilities provided. The authors further extend gratitude to Biotech Park, IIT Gauhati for GC – MSanalysis of the plant extract.

REFERENCES

